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Abstract

Time domain integral equation solvers for transient scattering from electrically large objects have benefitted signifi-
cantly from acceleration techniques like the plane wave time domain (PWTD) algorithm; these techniques reduce the
asymptotic CPU and memory cost. However, PWTD breaks down when used in the analysis of structures that have sub-
wavelength features or features whose length scales are orders of magnitude smaller than the smallest wavelength in the
incident pulse. Instances of these occurring in electromagnetics range from antenna topologies, to feed structures, etc.
In this regime, it is the geometric constraints that dictate the computational complexity, as opposed to the wavelength
of interest. In this work, we present an approach for efficient analysis of such sub-wavelength source/observer distributions
in time domain. The methodology that we seek to exploit is the recently developed algorithm based on Cartesian expan-
sions for accelerating the computation of potentials of the form Rm. In this paper, we present an efficient methodology for
computing these polynomials for two different scenarios; where the size of the domain spans the distance travelled by light
in (i) one time step and (ii) multiple time steps. These algorithms are cast within the framework of both uniform and non-
uniform distributions. Results that demonstrate the efficiency and convergence of the proposed algorithm are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Integral equation-based analysis of scattering from electrically large objects has been made possible via the
development of acceleration techniques in both the frequency and time domain. In frequency domain, they are
the fast multipole method (FMM) [1] and the adaptive integral method (AIM) [2], and their time domain
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counterparts are the PWTD algorithm [3] and the time domain AIM [4]. These methods have ameliorated the
computational cost when the size of the overall object is several wavelengths long and the smallest feature scale
is a fraction of the wavelength. However, analysis of structures that contain a mix of feature scales, poses
problems for both acceleration techniques. Here, it is the geometric constraint that dictate the computational
complexity. For instance, to model fine features, it is necessary to discretize that domain at a considerably
higher rate than that is dictated by the smallest wavelength to capture the geometric details, see Fig. 1. These
features occur in the analysis of practical problems in applied electromagnetics, ranging from EMI/EMC
applications to antenna topologies to feed structures to signal integrity analysis in high speed interconnects,
etc. The solution to this problem is typically sought by devising a methodology that works at sub-wavelength
scales, and developing a transition to higher frequencies so that it can be integrated with existing acceleration
methodologies. As an aside, we note that modification of TDAIM for analyzing structures discretized at sub-
wavelength scales exist [5], but it breaks down when the structure has multiple scales.

The problem encountered herein is not very different from those addressed in the frequency domain fast
multipole method (FMM). FMM breaks down as the underlying kernel becomes unstable. Several solutions
to this problem have been proposed, notably by [6–9], and many have been combined with classical FMM to
yield robust and efficient methods for analyzing structures whose features span multiple scales [10,11,9]. The
problems encountered in extending PWTD to analyzing sub-wavelength features is akin to those encountered
in FMM. The PWTD algorithm is a time domain analogue of FMM, with one significant difference; the field
due to a quasi-time limited and bandlimited source can be reconstructed to arbitrary accuracy using a discrete
set of propagating plane waves provided certain separation conditions between the source and observers are
met [12]. The separation criterion ensures that time gating can be employed to yield causal results. Unlike in
the frequency domain, the cause of breakdown is not the expansions used in the algorithm; all functions used
in the expansion are regular at zero. The breakdown occurs because domains that interact with each other via
the PWTD algorithm are determined indirectly by the time step size. As the time step depends only on the
maximum frequency of excitation and not on the smallest discretization, it implies that PWTD breaks down
as an acceleration tool because most of the interactions would fall under the ‘‘near’’ field classification. How-
ever, these arguments suggest an approach for overcoming this hurdle; develop an acceleration procedure
using adaptive time stepping. The main advantage of this procedure is the seamless manner in which it can
be integrated with the classical PWTD scheme for high frequencies, resulting in an acceleration scheme that
is valid at all length scales [13,14]. Alternatively, one can modify existing frequency domain low-frequency
algorithm to construct time domain information [15]. This implies that one needs to develop the mechanism
to transition from frequency to time domain and vice versa such that the resulting system can still be cast
Fig. 1. Example of antenna feed geometry with low- and high-frequency regimes denoted by XLF and XHF, respectively. Smallest
wavelength of incident pulse is also shown for reference.
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within the framework that permits transient analysis within a marching-on-in-time framework. It has been
shown that the latter approach is considerably faster than the former [15].

This paper presents an alternate method to arrive at the same objective and is founded on using Taylor
expansions in a Cartesian framework. More specifically, the methodology presented herein will rely on the
recently developed fast kernels for evaluating potential of the form Rm for m 2 R, and is very competitive in
terms of speed for a given accuracy with the other two methods that exist [13–15]. Furthermore, it can be triv-
ially extended to multiple time steps as well as integrated with PWTD. Thus, the main contribution in this
work are

� Development of an acceleration technique to compute retarded potentials in the sub-wavelength regime.
The method presented relies on representing the retarded potential as a function of potentials of the form
Rm, and then accelerating this function. The presented method can be extended to other functional repre-
sentations as well.
� Development of the requisite algorithmic structure to seamlessly extend this (with very little cost overhead)

to multiple time steps. Extension to multiple time steps is done with the sole aim of integrating with the
PWTD algorithm. The means to do so will be presented elsewhere.
� Development of techniques to further optimize the underlying kernels, and an algorithmic variation of the

techniques presented in [16] for non-uniform geometries.

This paper is organized as follows: Section 2 formulates the problem, and casts it in terms of evaluation of
potentials of the form Rm; followed by a brief description of necessary theorems of accelerated Cartesian
expansion (ACE) method, for rapid evaluation of such potentials. Section 3 discuss in detail the application
of ACE method in accelerating the evaluation of time domain fields from retarded potential and elucidates the
steps necessary to implement this for multiple time steps. Finally, Section 4 presents plethora of results that
demonstrate the efficiency of the proposed algorithm as well as its convergence. Conclusions of this study and
proposed work are drawn in Section 5. Algorithms used here for non-uniform geometries and improvements
to the kernel are presented in the Appendix A.

2. Preliminaries

2.1. Problem description

Consider a set of Ns sources that are randomly distributed in a domain X. The location of these sources will
be denoted using rn and their time signatures by fn(rn,t) for n = 1, . . . ,Ns. It is assumed that these functions are
bandlimited to an angular frequency xmax and all sources are approximately quiescent for t < 0. As in all time
domain solvers, the source functions fn(rn,t) are known only at evenly spaced time steps tk = kDt for
k = 1, . . . ,Nt where Dt = p/(vxmax), NtDt is the total simulation time and v is an oversampling factor. Typi-
cally, v > 1 and chosen between 5 to 20 to accurately reconstruct functions fn(rn,t) from its samples. The field
at any point r due to these sources is given by
Uðr; tÞ ¼
XN s

n¼1

dðt � Rn=cÞ
Rn

Hfnðrn; tÞ ð1Þ
where c is the speed of light, w denotes convolution in time and Rn = ir � rni. It is apparent that the cost of
computing (1) scales as OðNtN 2

s Þ. Finally, in keeping with the definition of sub-wavelength regime, we will as-
sume that the diamðXÞ ¼ OðcDtÞ. Given the size of the domain, it is apparent that the PWTD scheme cannot
be readily used; it has to be substantially modified in order to evaluate these potentials efficiently [14].

In developing this scheme, it is necessary that the source signatures in (1) be known so as to facilitate the
integration of the proposed algorithm with existing marching-on-in-time solvers for time domain integral
equations. The starting point of the proposed method arises from the representation of the source signal.
We will assume that the source function can be represented in terms of fnðrn; tÞ ¼

P
kInkT kðtÞ, where

Tk(t) = T(t � tk) is a time basis function and Ik are the samples of the function at the discrete time step tk.
It follows from this representation that
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Uðr; tÞ ¼
XN s

n¼1

XNt

k¼0

In;k
T kðt � Rn=cÞ

Rn
ð2Þ
This implies that to realize a fast algorithm, one needs to rapidly compute functions of the form Tk(t � Rn/c).
To illustrate the development of a fast algorithm, we will assume that the temporal basis functions are back-
ward Lagrange polynomials. Note, however, that the methodology presented herein is not restricted to poly-
nomials. To this end, we will define Kth order basis functions of the form
T ðtÞ ¼
hkðtÞgK�kðtÞ for ðk � 1ÞDt 6 t 6 kDt; k ¼ 0; . . . ;K

0 otherwise

�
ð3aÞ
where
hkðtÞ ¼
1 k ¼ 0Qk

i¼1
t�iDt
�iDt

k 6¼ 0

(
ð3bÞ
and
gK�kðtÞ ¼
YK�k

i¼1

t þ iDt

iDt
ð3cÞ
It follows, from the above equation that T(t) = 0 for t 62 (�Dt,KDt), T(0) = 1 and T(t) = 0 for
t = � Dt,Dt, 2Dt, . . . , (K � 1)Dt. Using the functions in Eq. (2), and point testing in time, results in the poten-
tial function that is a polynomial of Rn. It means that one can directly exploit acceleration methods developed
for kernels of the form Rm [17].

2.2. Accelerated Cartesian expansions (ACE)

The mathematical engine behind the fast method developed in this work relies on accelerated Cartesian
expansions (ACE) [17]. This method uses a Taylor’s series expansion to create addition theorems in terms
of Cartesian tensors, exploits the fact that these tensors are totally symmetric and derives an exact algorithm
for traversing up and down the tree. The proposed methodology is applicable to a wide range of non-oscilla-
tory kernels with little change in the overall algorithmic structure. While this technique was introduced for
kernels of the form Rm, the proposed technique has been extended to frequency domain sub-wavelength ker-
nels [9], Yukawa (or shielded Coulomb) potentials and Gauss transforms. While similar methodologies have
been introduced earlier [18,19], they are either not generalizable or offer only some of the advantages of this
scheme. In what follows, a brief overview of ACE algorithm and the relevant definitions and theorems are
presented.

Tensor analysis is an integral tool used in development of ACE algorithm. A Cartesian tensor of rank n is
denoted by A(n) or in component notation by AðnÞa1...an

, and is an array of 3n components, for points in R3. A
totally symmetric tensor is one that is independent of the permutation of indices a1 . . . an and in compressed
form it contains (n + 1)(n + 2)/2 independent components. Alternatively, they can be represented in com-
pressed form as A(n)(n1,n2,n3) where n1 + n2 + n3 = n, and ni is the number of times the index i is repeated.
An n-fold contraction between two tensors A(n+m) and B(n) is represented using C(m) = A(n+m) Æ n Æ B(n). An
extensive exposition of theorems and formulae pertinent to the properties of compressed tensors, their appli-
cation to the ACE algorithm, asymptotic cost scaling, etc. can be found in [17].

Next, we will briefly outline the theorems that permit the fast evaluation of functions. To this end, assume
that domains Xs and Xo are sufficiently separated, and comprise of sources and observers, respectively. Also,
Xs � Xp

s , Xo � Xp
o and Xp

s \ Xp
o ¼ ;. The centers of the domains Xs, Xo, Xp

s and Xp
o are denoted by rs, ro, rp

s and
rp

o, respectively. Further, denote the potential function that maps the effects of these sources on the observation
points as w(R), where R = ir � r 0i and k sources exist in Xs. Here, the function w(R) can stand for any inter-
polation function T(t) convolved with the retarded potential and observed at time t = 0. An addition theorem
for this function may be obtained using Taylor’s expansion.
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Theorem 2.1 (Taylor expansion). The function w(r � r 0) can be expressed about the origin using
wðr� r0Þ ¼
X1
n¼0

ð�1Þn

n!
r0n � n � rnwðrÞ ð4Þ
where r > r 0

This theorem gives rise to the following corollary.

Corollary 2.2. The function w(r � r 0) takes the form
wðr� r0Þ ¼

P1
n¼0

MðnÞ � n � rnwðrÞ for r > r0

P1
n¼0

r0n � n � LðnÞ for r0 > r

8>><>>: ð5Þ
where M(n) and L(n) are the multipole and local expansions. These theorems may be used in concert to derive/prove

the following five theorems that form the crux of ACE [17].

Theorem 2.3 (Multipole expansion). The total potential at any point r 2 Xo due to k sources qi, i = 1, . . . ,k

located at points ri 2 Xs is given as
wðrÞ ¼
X1
n¼0

MðnÞ � n � rnwðrÞ

MðnÞ ¼
Xk

i¼1

ð�1Þn qi

n!
ðri � rsÞn

ð6Þ
where M(n) is the multipole tensor.

Theorem 2.4 (Multipole-to-multipole expansion). Given a multipole expansion of k sources about rs
OðnÞ ¼
Xk

i¼1

ð�1Þn qi

n!
ðri � rsÞn ð7aÞ
then the multipole expansion about the point rp
s can be expressed in terms of (7a) as
MðnÞ ¼
Xk

i¼1

ð�1Þn qi

n!
ðri � rp

s Þ
n ¼

Xn

m¼0

X
P ðm;nÞ

m!

n!
ðrp

s � rsÞn�m
OðmÞ ð7bÞ
It is evident that one can repeatedly use this theorem to translate the multipole expansion from rs to rp
s . This

expression is exact [17].

Theorem 2.5 (Multipole-to-local translation). Assume that the domains Xp
s and Xp

o are sufficiently separated,
and the distance between their centers rp

os ¼ jrp
osj ¼ jrp

o � rp
s j is greater that diamfXp

sg and diamfXp
og. If a multipole

expansion M(n) is located at rp
s , then another expansion L(n) that produces the same field 8r 2 Xp

o is given by
wðrÞ ¼
X1
n¼0

qn � n � LðnÞ

LðnÞ ¼
X1
m¼n

1

n!
Mðm�nÞ � ðm� nÞ � ermwðrp

osÞ
ð8Þ
where q ¼ r� rp
o and ~r is the derivative with respect to rp

s .

Theorem 2.6 (Local-to-local expansion). A local expansion O(n) that exists in the domain Xp
o centered around rp

o

can be shifted to the domain Xo centered at ro using
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LðnÞ ¼
X1
m¼n

m

m� n

� �
OðmÞ � ðm� nÞ � ðrcp

o Þ
m�n ð9Þ
It can be shown that this expression is exact as well. Finally, the fields at a set of observation points can be
computed using the following theorem
wðrÞ ¼
X1
n¼0

LðnÞ � n � ðqoiÞ
n ð10Þ
Proofs for these theorems for w(R) = Rm can be found in [17] and may be trivially extended to functions of the
form w(R) = span{R�m} for m = � 1,0,1, . . . ,K, or any other non-oscillatory function. Note, that when
w(R) = R�m, evaluating the multipole-to-local expansion using Theorem 2.5 implies the computation of $nR�m

which can be efficiently effected through
o
n1
i o

n2
j o

n3
k

1

Rm

� �
¼ ð�1ÞnR�2n�m

Xbn1
2 c

m1¼0

Xbn2
2 c

m2¼0

Xbn3
2 c

m3¼0

ð�1Þm
n1

m1

� �
n2

m2

� �
n3

m3

� �
�R2mf ðm;n�m� 1Þxn1�2m1 yn2�2m2 zn3�2m3

ð11Þ

where R2 = x2 + y2 + z2. As was pointed out in [17], a computation scheme based on these theorems have the
following characteristics:

(1) The multipoles are independent of the function being translated. Only the translation operator depends
on m. This fact will be of use in developing fast methods for evaluating the retarded potential.

(2) The multipole-to-multipole expansion (or the local-to-local expansion) is exact. This implies that the
errors obtained do not depend on the height of the tree.

(3) The formulation in terms of totally symmetric tensors permits the realization of CPU cost savings of a
factor of 1/720 over a simplistic implementation.

(4) Finally, since only the translation function depends on the potential function being used, it follows that
the proposed methodology can be readily altered, with very little change in the overall algorithm, for
other potential functions.

These theorems permit rapid evaluation of potential using either a standard or compressed oct-tree decom-
position of the domain. A standard oct-tree is constructed by first embedding the entire domain in a fictitious
cube that is then divided into eight sub-cubes and so on. This process continues recursively until the desired
level of refinement is reached; an Nl-level scheme implies Nl � 1 recursive divisions of the domain. At any level,
the domain that is being partitioned is called the parent of all the eight children that it is being partitioned into.
At the lowest level, all source/observers are mapped onto the smallest boxes, leaf boxes. This hierarchical par-
titioning of the domain is referred to as a regular oct-tree data structure. The interactions between all source
and observation points are now computed using traversal up and down the tree structure. At any level in the
tree, all boxes/domains are classified as being either in the near or far-field of each other using the following
dictum: two subdomains are classified as being in the far-field of each other if the distance between the centers
is at least twice the sidelength of the domain, and their parents are in the near-field of each other. This defi-
nition will be used unless it is specially stated that an alternate definition is necessary. Appendix A.1 briefly
delineates the methods used to efficiently create both the uniform and non-uniform oct-tree as well as inter-
action lists.

Next, we will describe modifications to this computational structure to accommodate interactions that
occur within a time step and those that extend across multiple time steps.

3. Low-frequency time domain acceleration scheme

This section presents the necessary framework for rapidly computing retarded potentials (in the low-fre-
quency regime) in two steps: (i) when the entire domain diam(X) 6 cDt and (ii) when diam(X) > cDt.
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3.1. Interaction within one time step

The field at any observation point r 2 X, at time instance iDt, due to sources at rn 2 X for n = 1, . . . ,Ns can
be obtained from Eq. (1)
UðiDt; rÞ ¼
XN s

n¼1

Z Dt

0

dðs� Rn=cÞ
Rn

fnðrn; iDt � sÞds ð12Þ
where Rn = ir � rniand fn(rn,t) is the transient source strength at the nth spatial point. The limits [0,Dt], on
above time integral is possible because Rn/c 2 [0,Dt]. Employing time domain basis function from Eq. (2)
and evaluating the time integral in Eq. (12) results in
UðiDt; rÞ ¼
XN s

n¼1

Xi

j¼i�K

In;j
T ðði� jÞDt � Rn=cÞ

Rn
ð13Þ

¼
XN s

n¼1

XK

j¼0

In;i�j
T ðjDt � Rn=cÞ

Rn
ð14Þ
where K is the order of temporal basis function T(t). Since T(t) is chosen to be a backward Lagrange polyno-
mial, Eq. (13) can be expressed in terms of powers of Rn/c as
UðiDt; rÞ ¼
XN s

n¼1

XK

j¼0

XK

h¼0

In;i�jaðh; jÞRh�1
n ð15Þ
In Eq. (15), a(h, j) is the coefficient corresponding to the polynomial of degree (h � 1) for the basis function at
(i � j)-th time step, they also depend on Dt and c. Evaluating these polynomials of form Rm can be performed
at OðN sÞ cost using the ACE algorithm detailed in Section 2.2. Thus, the overall cost of this scheme scales as
OðKNsÞ. Error bounds for using ACE to evaluate Eq. (15) can be obtained from the bounds derived in [17] and
it can be proven that the upper bound of the error is determined by that for R�1. Note, that the above der-
ivation is not specific to using polynomials as temporal basis functions. Other basis functions may be dealt
with in one of two ways; either by finding the appropriate translation functions, or by mapping these onto
a space of polynomials. Using polynomials is fairly trivial as the framework for the Rm kernel is readily avail-
able [17].

The OðKN sÞ reduction in cost, specified above, is for brute force implementation of the ACE algorithm. It is
important to recognize that the above formulation demands evaluation of the kernel R�m for different m’s.
However, most of the steps in the proposed algorithm are kernel independent. In that, Theorems 2.3 and
2.4 (multipole expansion and multipole-to-multipole translation) do not depend on the kernel. Similar obser-
vation holds for local-to-local translation and evaluation of potential from local expansion, Theorem 2.6 and
Eq. (10). Thus, only the multipole-to-local translation, Theorem 2.5, depends on the kernel and requires the
evaluation of $nRm for different m values. Therefore, evaluation of polynomials of form

P
mcmRm involves

(almost) one tree traversal (up and down) irrespective of the kernel, only the multipole-to-local translations
need to be done separately for each kernel or polynomials of different degrees. Thus, a careful implementation
of the ACE algorithm results in an adaptable and significantly lower cost algorithm. Applying the multipole-
to-local translation (Theorem 2.5) in Eq. (15) we get
UðiDt; rÞ ¼
XN s

n¼1

XK

j¼0

XK

h¼0

In;i�jaðh; jÞRh�1
n ¼

XN s

n¼1

XK

j¼0

XK

h¼0

In;i�jaðh; jÞ
XP

p¼0

rpRðh�1Þ
o � p � R0ðpÞn

¼
XP

p¼0

XK

j¼0

XK

h¼0

aðh; jÞrpRðh�1Þ
o

 !
� p �

XN s

n¼1

In;i�jR0ðpÞn

 !
¼
XK

j¼0

XP

p¼0

T ðpÞj � p �M
ðpÞ
j ð16Þ
where Ro = ir � roi, R0n ¼ kro � rnk and ro is the center of sphere enclosing all sources. T ðpÞj and M
ðpÞ
j are the

optimal tensor representation of multipoles and translation operation of the ACE algorithm. Eq. (16) implies
that upward tree traversal, i.e. multipole-to-multipole translation and multipole-to-local translation should be
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performed K times. This is to preserve the transient information, In,i�j associated with each basis function for
every source. However, downward tree traversal which include local-to-local translation and potential evalu-
ation needs to be performed only once.

3.2. Multiple time step interaction

The above exposition was geared towards developing a scheme for computing interactions when
diam(X) < cDt. Next, we will prescribe modifications to the methodology when diam(X) > cDt. Consider
two domains X1 and X2 such that, "r1 2 X1 and r2 2 X2 satisfies (N � 1)Dt 6 ir1 � r2i/c 6 NDt, where N is
any positive integer. Then, the field at any point r1 at ith time step, U(iDt, r1), due to N s;X2

sources at rn 2 X2

can be written as
UðiDt; r1Þ ¼
XN s;X2

n¼1

Z NDt

ðN�1ÞDt

dðs� Rn=cÞ
Rn

fnðiDt � s; rnÞdrds ð17Þ
where Rn = ir1 � rni. Repeating the derivation presented for single time step interaction, we get
UðiDt; r1Þ ¼
XN s

n¼1

XK

j¼0

In;i�j�ðN�1Þ
T ððjþ N � 1ÞDt � Rn=cÞ

Rn
ð18Þ
When N = 1, (18) reduces to the case for interaction within one time step (13). It is important to preserve R/c
argument of the basis function in (18), as a polynomial representation is necessary for acceleration using the
ACE algorithm. Thus, the key in multiple time step interaction is to identify groups X1 and X2, and it can be
done using the following argument,
find dmin P NDt and dmax 6 ðN þ 1ÞDt ð19Þ

where dmax and dmin are the maximum and minimum distance between any two points in X1 and X2, see Fig. 2.
For example, consider spherical domains of radii r1 and r2 whose centers are separated by Ro; then dmax = -
Ro + r1 + r2 and dmin = Ro � r1 � r2. From Eqs. (18) and (16) it can be inferred that the number of upward
tree traversals (multipole-to-multipole and multipole-to-local translations) equals NmaxK, where NmaxcDt is the
diameter of the sphere encompassing the entire low-frequency region X. These constraints mandate a new def-
inition be used when developing interaction lists in the oct-tree as follows:

Definition 1 (Interaction list rule). Consider two child boxes whose parent boxes are in near-field. They are in
each other’s far-field if the distance between their centers is at least twice the sidelength of the domain and they
satisfy Eq. (19). Otherwise, they are in each other’s near-field.

Some boxes may be well-separated in space and still not satisfy the temporal constraint in Eq. (19). For
example, consider two spheres of radius r1 = r2 = cDt/8 whose centers are separated by Ro = NcDt, now
dmax = c(N + 1/2)Dt and dmin = c(N � 1/4)Dt which do not satisfy Eq. (19). In such cases, one can choose
either of the following options: (i) sub-divide the domains and perform interaction at next level (with smaller
domain size); and (ii) consider the domains to be in near-field of each other and use direct evaluation. Sub-
dividing the domain without limit has two disadvantages. First, the number of unknowns per smallest box,
with increasing levels, can fall below the limit for optimal computational cost. Second, sub-division into smal-
Fig. 2. Definition for domains interacting over multiple time steps.
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ler size boxes does not always ensure compliance with constraint in Eq. (19); it can be shown that boxes who’s
centers are separated by multiples of cDt (NcDt), without regard to their size, will not follow the temporal con-
straint (19) and interaction between such boxes should be evaluated using direct methods, see Fig. 3. Further,
using the second option on short trees can increase the total number of near-field interactions and dominate
the overall computational cost. In this work, we consider an optimal implementation by combining both, i.e.
sub-dividing up to a certain level and beyond this level domains violating Eq. (19) are placed in near-field
interaction of each other. It is essential to note that the number of levels up to which sub-division is used
can be geometry dependent. In essence, this procedure overcomes the multiple time step interaction with a
slight cost overhead that should be optimized. Further observations are presented in next section.

4. Results

In this section, we present results that will substantiate the above claims and demonstrate the efficacy of the
algorithm presented herein. As in all illustration of FMM methods, the goal is to demonstrate considerable
speed-up with predetermined accuracy. Consequently, the results presented will demonstrate convergence
as well as OðN sÞ per time step CPU cost scaling. In all numerical experiments, the source/observer locations
are randomly distributed. The corresponding standard/compressed oct-tree data structures (including interac-
tion lists) are generated using the algorithmic procedure outlined in the Appendix A. The accuracy of the pro-
posed algorithm is validated against analytical data for all cases where the unknown count is numerically
small. The relative error at nth observer is evaluated as
ErrorfarðnÞ ¼
jjUfast;farðn; tÞ � Uanalytical;farðn; tÞjj2

jjUanalytical;farðn; tÞjj2
ð20Þ
where i Æ i2 represents L2-norm, Ufast, far (t) and Uanalytical, far(t) represent the time history of the fields produced
by the sources evaluated using proposed algorithm and analytical procedure, respectively. The error reported
in this work is the average error over all observers [14] when the number of observers Ns < 32,000. For larger
number of unknowns, the analytical data (and hence the error) is computed for randomly distributed un-
knowns (approximately 150). Hence, the reported data is an estimate of the expected error. These values
are denoted using a �. Finally, as is usually done for all fast algorithms, analytical data is computed only

for the source/observation pairs that are in the far-field of each other, and is consequently representative of
an upper bound or worst-case error. The CPU timings (in seconds) are those taken for evaluating the field
at a single time step using a 2.3 GHz Intel Pentium processor with 2 GB RAM running Linux OS. In all exper-
iments that follow, the time signature that is associated with the nth source is given by Eq. (21)



Table
Comp

Ns

12,000
12,000
12,000
12,000
12,000
32,000
32,000
32,000
32,000
64,000
64,000
64,000
64,000
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fnðt; rnÞ ¼ jne�ðt�tpÞ2=2r2 ð21Þ

where jn is the magnitude of the source randomly chosen between [0,1], r = 6.366 · 10�8 s and tp = 6r s.
The effective highest frequency and minimum wavelength associated with these signal parameters are fmax =
3/pr = 15 MHz and kmin � 20 m, respectively. As prescribed in MOT solvers, the time step is chosen as
Dt = 1/(20 fmax) = 3.334 ns and is independent of geometric feature size and only a function of fmax. The above
parameters are chosen such that cDt = 1 m, thus, all geometric features smaller than 1 m would fall in the
sub-wavelength category. In rest of the section, P denotes the number of ACE harmonics used and K denotes
the order of the time basis function.

The first set of numerical simulation is performed to demonstrate the validity of the improvements made in
the kernel that reduce the number of translations by approximately a factor of two without significantly affect-
ing the order of the error (see Appendix A.1 for details). The numerical experiment performed is as follows;
source points were randomly distributed within a cube of sidelength 0.5 m, i.e. all points interact within one
time step. The number of source/observation points is varied (as is the height of the tree), the number of
unknowns at a leaf box is approximately 64, and error is obtained for the ‘‘Old’’ and ‘‘New’’ schemes. The
results presented in Table 1 indicate what is expected, viz., the computational cost is reduced approximately
by a factor of two while the increase in error is almost always marginal (the order of magnitude of the error is
unchanged).

Next, we demonstrate that the multipole-to-multipole and local-to-local operations are exact. An important
ramification of this is that the error is independent of the height of the tree. This experiment is effected as fol-
lows: consider two cubical domains X1 = (0, 1/4) · (0,1/4) · (0, 1/4) m3 and X2 = (1/2,3/4) · (0, 1/4) · (0,1/
4) m3. Each domain contains 4000 randomly distributed source and observation points. In constructing inter-
action lists, it is ensured that only sources/observers in X1 and X2 interact, all others are ignored. Thus, as the
number of levels in the tree are increased, the change in the error norm can be attributed solely to the mul-
tipole-to-multipole and local-to-local operations. Table 2 shows error computed for different {P,K} pairs
and different levels in tree, where dx0 is the size (in meters) of smallest box. It is evident from Table 2 that,
for a given {P,K} pair, the variation in error obtained from using different levels in the tree is accurate to dou-
ble precision. This is a consequence of the fact that Theorems 2.4 and 2.6 are exact, i.e. they produce the mul-
tipole (or local) expansion had the box size at that level been the leaf box. Consequently, the error bounds are
much tighter. Details and proofs can be found in [17].

Next, results are presented for distribution wherein all source/observation pairs are distributed within a
domain X < cDt and distribution sizes ranging from 8000 to 4,000,000 points. The number of unknowns
per leaf box, on average, is chosen to lie between 60 and 70. From Table 1, it can be inferred that number
of harmonics and order of time basis function are closely coupled, i.e. for a given K, arbitrarily increasing
P does not improve the error and vice versa. This is true because the two sources for error (20) reported here
are (a) approximation of a time signal with polynomial basis function of order K and (b) error in evaluating a
1
arison between old and new (reduced) scheme for interaction list for different distribution sizes (Ns) and {P,K} pairs

{P,K} Olderror Newerror Oldtime Newtime Oldtime/Newtime

{3,1} 3.40E�4 5.96E�4 0.21 0.11 1.96
{4,2} 6.94E�5 1.43E�4 0.54 0.23 2.4
{5,2} 2.73E�5 4.87E�5 1.00 0.42 2.37
{9,3} 2.37E�6 4.52E�6 9.49 3.6 2.63
{13,3} 8.00E�7 1.62E�6 53.47 18.5 2.89
{3,1} 2.36E�4 3.55E�4 0.67 0.38 1.75
{4,2} 3.61E�5 6.54E�5 1.97 0.91 2.16
{5,2} 1.70E�5 2.59E�5 3.65 1.68 2.17
{9,3} 1.38E�6 2.31E�6 28.54 14.42 1.98
{3,1} 2.86E�4 6.38E�4 1.56 0.79 1.98
{4,2} 6.42E�5 1.74E�4 3.94 1.9 2.07
{5,2} 1.82E�5 4.01E�5 7.17 3.18 2.26
{9,3} 4.02E�6 8.00E�6 66.02 27.95 2.36



Table 3
Errorfar in single time step interaction case (Cs = 0.5), for various Ns and {P,K} pairs

Ns Levels Errorfar, {P,K}

{1,1} {2,1} {3,1} {4,2} {5,2} {9,3} {13,3}

8000 4 5.81E�3 9.38E�4 3.41E�4 7.87E�5 2.09E�5 4.97E�6 8.85E�7
12,000 4 9.95E�3 1.55E�3 5.96E�4 1.43E�4 4.87E�5 4.52E�6 1.62E�6
32,000 4 4.74E�3 6.37E�4 3.55E�4 6.54E�5 2.59E�5 2.31E�6 1.03E�6
64,000� 5 8.08E�3 9.44E�4 6.38E�4 1.74E�4 4.01E�5 8.00E�6 2.43E�6
500,000� 6 1.50E�3 1.76E�3 1.18E�3 4.06E�4 2.48E�5 8.34E�6 –

Table 2
Exact multipole-to-multipole and local-to-local operators of ACE

dx0 Levels {P,K}

A = 0.0625 {1,1} {2,1} {4,2}

A 4 1.8800972191556 69E�2 5.514103752372 495E�3 7.03463843261 4828E�4
A/2 5 1.8800972191556 66E�2 5.514103752372 538E�3 7.03463843261 3739E�4
A/8 7 1.8800972191556 70E�2 5.514103752372 537E�3 7.03463843261 3831E�4
A/32 9 1.8800972191556 70E�2 5.514103752372 536E�3 7.03463843261 3819E�4

Table 4
Comparison of run-time in single time step interaction case (Cs = 0.5)

Ns TDirect Tfast,{P,K}

{1,1} {2,1} {4,2} {9,3} {13,3}

8000 4.47 1.40E�2 3.18E�2 0.14 2.17 10.96
12,000 11.02 2.27E�2 4.61E�2 0.23 3.60 18.50
32,000 97.59 8.87E�2 0.18 0.91 14.42 85.2
64,000 – 0.20 0.44 1.90 27.95 173.38
500,000 – 1.94 3.82 15.67 245.37 –
1,000,000 – 3.78 7.19 30.98 498.03 –
2,000,000 – 7.71 13.33 60.18 742.21 –
4,000,000 – 16.06 27.46 121.72 1940.15 –
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polynomial through ACE (limited P) due to far-field approximation. Hence, the results for time comparison
are presented only for the optimal pairs {P, K}. For example, {4,2} indicates simulation run with fourth order
harmonic in ACE and second order temporal basis functions. In general first, second and third order temporal
basis function can provide up to Oð10�4Þ, Oð10�5Þ and Oð10�7Þ accuracies respectively, for the given source
signal parameters (21). Table 3 shows the relative error for different {P,K} pairs and distribution sizes, Ns. It
can be seen that for increasing {P,K} combination the error decreases consistently. Table 4 presents the per
time step computation time involved in both direct and proposed algorithm, the order of error corresponding
to different {P,K} pairs can be inferred from Table 3.

Similar results are presented for multiple time step interaction in Tables 5 and 6, where N denotes the num-
ber of distinct time step interactions and Cs denotes the sidelength of cube enclosing all sources/observers in
meters. In Tables 3–6 empty entries, pertaining to large Ns and {P,K} values, are due to insufficient computer
memory on the chosen computer platform. Fig. 4 shows Ns vs. Tfar graph in log scale for data in Table 4. The
lines plotted in the graph corresponds to a least square error linear fit for different {P,K} pairs. Slope of these
line for different {P,K} values was approximately 1.06, thus, validating the OðN sÞ scaling of algorithm pre-
sented here.

The evident mismatch between timings in Tables 6 and 4 is explained as follows. In the case of single time
step interaction, the size of smallest box was chosen to accommodate 60–70 unknowns per box on average.
However the largest box, at top of the tree (level 1), is within cDt dimensions; therefore, the height of the tree



Table 5
Errorfar in multiple time step interaction case, for various combination of Ns, N and {P,K} pairs. N is the number of distinct time steps
involved

Ns Levels Cs N Errorfar,{P,K}

{1,1} {2,1} {3,1} {4,2} {5,2} {9,3}

8000 4 1.0 2 2.92E�3 5.79E�4 3.15E�4 6.27E�5 2.67E�5 1.97E�6
12,000 4 1.0 2 2.97E�3 5.42E�4 3.07E�4 5.67E�5 2.45E�5 1.90E�6
32,000 4 1.0 2 3.50E�3 7.06E�4 4.53E�4 8.14E�5 2.99E�5 3.32E�6
32,000 5 2.0 3 2.11E�3 4.07E�4 3.22E�4 5.03E�5 1.54E�5 9.15E�7
128,000� 6 2.0 3 3.80E�3 3.33E�4 3.30E�4 7.19E�5 1.62E�5 –

Table 6
Comparison of run-time in multiple time step interaction case

Ns Cs N TDirect TFast, {P,K}

{1,1} {2,1} {4,2} {9,3}

8000 1.0 2 2.02 0.03 0.06 0.31 4.85
12,000 1.0 2 4.69 0.04 0.10 0.49 7.68
32,000 1.0 2 61.93 0.19 0.44 2.52 43.97
32,000 2.0 3 34.31 0.17 0.32 1.67 28.49
64,000 2.0 3 – 0.67 1.52 8.76 165.45
500,000 2.0 4 – 27.89 55.47 294.06 –
1,000,000 1.0 2 – 45.52 83.37 433.34 –

Fig. 4. log (Ns) vs. log (Tfar) for single interaction case and uniform geometry.
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increases as distribution size is increased. In case of multiple time step interactions one can keep the leaf box
size constant and increase the level-1 box size for higher distribution size, to achieve �64 unknowns per leaf
box. However, this does not imply a direct increase in tree height because the interactions at larger boxes also
need to obey (19). For example, for two spheres of radius rs to interact, the limiting condition based on (19), is
rs 6 cDt/4. Boxes greater than this size interact only through their child. This is the only limitation of the algo-
rithm presented here, however, in practice the algorithm can be strictly used to compute field interacting in few
time steps only and PWTD will interface with this method when ºR/(cDt)ß is beyond a certain number of time
steps. Thus, an ideal algorithm should switch between the proposed algorithm and PWTD seamlessly.



Fig. 5. Non-uniform geometry configuration 1, resembling interconnect in electronic chips (Ns = 12,000).

Table 7
Errorfar for non-uniform geometry configuration 1

Ns Levels Errorfar, {P,K}

{1,1} {2,1} {3,2} {4,2} {5,2} {6,3} {8,3} {9,3}

8000 4 3.81E�3 9.46E�4 1.83E�4 3.78E�5 1.62E�5 3.06E�6 1.18E�6 7.52E�7
12,000 5 3.58E�3 8.62E�3 1.64E�4 3.43E�5 1.51E�5 2.59E�6 1.10E�7 7.27E�7
32,000 6 3.23E�3 6.75E�4 1.14E�4 2.69E�5 1.32E�5 2.02E�6 9.46E�7 6.93E�7

Table 8
Comparison of run-time for non-uniform geometry configuration 1

Ns TFast, {P,K}

{1,1} {2,1} {4,2} {6,3}

8000 0.03 0.05 0.14 0.49
16,000 0.05 0.09 0.32 1.03
32,000 0.11 0.20 0.63 2.28
64,000 0.25 0.43 1.42 4.8
250,000 1.19 1.75 5.33 18.86
500,000 2.61 3.58 10.86 40.08
1,000,000 6.11 7.8 23.25 79.63
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Finally, results for an adaptive version of the algorithm introduced here is shown on two types of non-uni-
formly distributed geometries. The first closely resembles interconnects in electronic chips as shown in Fig. 5.
The distribution of points between top and bottom planes and two interconnects were approximately the
same. In applying the adaptive version, the number of unknowns per leaf node was approximately 64, was



Fig. 6. log (Ns) vs. log (Tfar) for single interaction case and non-uniform geometry.

Fig. 7. Non-uniform geometry configuration 2 (Ns = 9600).
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tested for source/observer distributions ranging from 8000 to 1,000,000. Table 7 presents the error obtained
using the proposed algorithm, and was generated for different combinations of ACE harmonics (P) and order
of time basis function (K). The rate of error convergence exhibited here is fast in comparison to those in Tables
3 and 5. This outcome is primarily attributed to the consideration of smallest box enclosure and stricter



Table 9
Comparison of run-time for non-uniform geometry configuration 2

Ns TFast, {P,K}

{1,1} {2,1} {4,2} {6,3}

9600 0.03 0.05 0.19 0.51
38,400 0.13 0.23 0.79 2.88
105,000 0.4 0.72 2.35 8.42
450,000 2.16 3.18 10.52 37.34
1,000,000 5.17 7.07 24.33 82.46
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enforcement of error criteria in building the interaction list; see Appendix A.2 for details. The timing result for
this geometry configuration is presented in Table 8. As explained above in uniform distribution, the timing
results are presented only for certain combinations of {P,K}, each pair corresponding to different orders of
accuracy given in Table 7. Fig. 6 shows Ns vs. Tfar graph in log scale. The slope of the linear fit was approx-
imately 1.06 for different pairs of {P,K}, exhibiting the OðN sÞ scaling produced by the adaptive version of the
algorithm. The second geometry configuration considered is made of three circles with points non-uniformly
distributed in each of them as shown in Fig. 7. Each circle is 0.15 m in radius and the points were distributed
so that density of points is inversely proportional to the radius. The adaptive version is applied on five different
distribution sizes varying from 9600 to 1,000,000 and the results are shown in Table 9. As before, it can be
verified that the time scaling is OðN sÞ.

5. Conclusion

In this paper, a novel fast method, based on Accelerated Cartesian Expansions (ACE), has been devel-
oped for computation of transient field due to sub-wavelength source/observer distributions. The proposed
method reduces the computational cost from OðN 2

s Þ to OðN sÞ per time step for distributions that lie within a
time step. Though the algorithm is presented in detail for Lagrange-type basis functions, the extension to any
class of basis function is straightforward and follows the same procedure and criteria used here. An adaptive
version of the algorithm was also developed for analyzing non-uniformly distributed source/observers. Pleth-
ora of numerical results presented demonstrate both the accuracy and speed of the proposed algorithm. In
the distributions tested, it is evident that the modification suggested to the kernel are effective as is the algo-
rithm for the non-uniform distribution. Results have also been presented for analyzing distributions in
domains whose extent is greater than cDt. It is evident that the proposed algorithm produces accurate results.
However as noted, the algorithm presented herein is not optimal in an asymptotic sense for domain sizes
that span multiple time steps. Ideally this algorithm will be used for source distributions in sub-wavelength
domain and defer to other fast methods (specifically, the plane wave domain algorithm) at higher frequen-
cies. As, far interactions in the PWTD algorithm are boxes that are separated by OðcDtÞ, the presented algo-
rithm can be used for all interactions wherein the separation distance is less than OðcDtÞ. Thus, the
asymptotic scaling of the presented algorithm due to separation distance greater than OðcDtÞ does not have
a great impact. Work on implementing this algorithm with the framework of PWTD is currently underway,
and will be presented elsewhere.
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Appendix A. Implementation details

This section briefly describes details useful for implementing this algorithm; this is done largely for com-
pleteness. If an algorithm already exists, then only variation that are used herein are presented.



Fig. 8. An example of compressed-quadtree with binary key representation used to label the tree nodes.
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A.1. Reduced interaction list

It is well known [20,16] that evaluation of multipole-to-local translation for pairs in interaction list forms
the major part of the computation cost. Both the per-translation evaluation cost and number of interaction
pairs (typically 189) are very high. To reduce this cost, we use a new definition to classify far-field pairs: if

box a (at level l + 1) interacts with all the children of box b (at level l) and box a, box b are in far-field of each

other then box a interacts with box b. Interaction between boxes at two consecutive levels is easily effected using
Cartesian tensors. In fully populated oct-tree this results in a reduction in the number of translation operations
by half with minimal increase in error, as is evident in Table 1.

A.2. Compressed oct-tree

In this work, we closely follow the approach presented in [16] for compressed oct-tree representation of
non-uniform geometries. The main deviation from [16] is, we enclose the smallest box with some pre-fixed
number of points per box, s. While this approach is not significantly different in terms of cost when compared
with [16], it does provide the possibility of improving error with certain geometries as the error in multipole
evaluation is reduced. With the elimination of single child parent nodes, the resulting oct-tree would have the
same structure as in [16] except the leaf box size would be smaller here as shown in Fig. 8. Interaction list at the
leaf nodes is compiled using the approach prescribed in [16]. Binary keys [21] were used to represent the nodes
of oct-tree.
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